二元一次方程是指含有两个未知数(例如x和y),并且所含未知数的项的次数都是1的方程。两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组。每个方程可化简为ax+by=c的形式。
二元一次方程组解法
消元法
1)代入消元法
用代入消元法的一般步骤是:
1.选一个系数比较简单的方程进行变形,变成y=ax+b或x=ay+b的形式;
2.将y=ax+b或x=ay+b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;
3.解这个一元一次方程,求出x或y值;
4.将已求出的x或y值代入方程组中的任意一个方程(y=ax+b或x=ay+b),求出另一个未知数;
5。把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。
2)加减消元法
①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;
②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;
③解这个一元一次方程;
④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;
⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。
换元法
例,(x+5)+(y-4)=8
(x+5)-(y-4)=4
令x+5=m,y-4=n
原方程可写为
m+n=8
m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
设参数法
例,x:y=1:4
5x+6y=29
令x=t,y=4t
方程2可写为:5t+6*4t=29
29t=29
t=1
所以x=1,y=4
二元一次方程组练习题
1.2x+9y=81
3x+y=34
2.9x+4y=35
8x+3y=30
3.7x+2y=52
7x+4y=62
4.4x+6y=54
9x+2y=87
5.2x+y=7
2x+5y=19
6.x+2y=21
3x+5y=56
7.5x+7y=52
5x+2y=22
8.5x+5y=65
7x+7y=203
9.8x+4y=56
x+4y=21
10.5x+7y=41
5x+8y=44
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
相关文章:
食盐是一种什么颗粒 成分是什么04-30
铜绿的主要成分是什么 性质有哪些04-30
合金是溶液吗 性质是什么04-30
酸度应该怎么计算04-30
什么的水洼04-30
世说新语是六朝什么小说的代表作04-30
灵宪是什么史上的不朽之作04-30
少年中国说七个比喻句的象征04-30
谢道韫与谢灵运有什么关系04-30
人有悲欢离合月有阴晴圆缺蕴含的哲理04-30