勾股定理逆定理的内容及证明方法

时间:2024-04-30 19:21:11 5A范文网 浏览: 平时作业 我要投稿

如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。最长边所对的角为直角。本文整理了勾股定理逆定理的内容及其证明方法。

勾股定理逆定理的内容及证明方法

勾股定理的逆定理

勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。若c为最长边,且a2+b2=c2,则△ABC是直角三角形。如果a2+b2>c2,则△ABC是锐角三角形。如果a2+b2<c2,则△ABC是钝角三角形。

勾股定理逆定理的证明方法

勾股定理逆定理的证明方法

如图,已知在△ABC中,设AB=c,AC=b,BC=a,且a2+b2=c2。求证∠ACB=90°

证明:在△ABC内部作一个∠HCB=∠A,使H在AB上。

∵∠B=∠B,∠A=∠HCB

∴△ABC∽△CBH(有两个角对应相等的两个三角形相似)

∴AB/BC=BC/BH,即BH=a2/c

而AH=AB-BH=c-a2/c=(c2-a2)/c=b2/c

∴AH/AC=(b2/c)/b=b/c=AC/AB

∵∠A=∠A

∴△ACH∽△ABC(两边对应成比例且夹角相等的两个三角形相似)

∴△ACH∽△CBH(相似三角形的传递性)

∴∠AHC=∠CHB

∵∠AHC+∠CHB=∠AHB=180°

∴∠AHC=∠CHB=90°

∴∠ACB=∠AHC=90°

勾股定理的证明方法

做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像下图那样拼成两个正方形。

发现四个直角三角形和一个边长为a的正方形和一个边长为b的正方形,刚好可以组成边长为(a+b)的正方形;四个直角三角形和一个边长为c的正方形也刚好凑成边长为(a+b)的正方形。所以可以看出以上两个大正方形面积相等。可以列出公式为:a2+b2+4×1/2ab=c2++4×1/2ab,计算可得::a2+b2=c2

勾股定理的证明方法

以上是小编给大家整理的勾股定理及勾股定理逆定理的证明方法,希望对同学们有帮助。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。

相关文章:

文化在综合国力竞争中的地位和作用04-30

政治制度决定教育的04-30

公有制主体地位的体现04-30

教育对生产力的促进作用04-30

文化对教育的影响04-30

中国传统伦理道德的基本内容04-30

联系的多样性原理04-30

文化传承的根本动力是什么04-30

文化创新的根本途径04-30

大众传媒的作用04-30

热搜文章
最新文章