三角函数是考试中的一个重要的考点,那么三角函数的最小正周期怎么求?下面是相关信息,供大家参考。
1、定义法
概念:根据周期函数和最小正周期的定义,确定所给函数的最小正周期。
例1、求函数y=|sinx|+|cosx|的最小正周期.
解:∵=|sinx|+|cosx|
=|-sinx|+|cosx|
=|cos(x+π/2)|+|sin(x+π/2)|
=|sin(x+π/2)|+|cos(x+π/2)|
=f(x+π/2)
对定义域内的每一个x,当x增加到x+π/2时,函数值重复出现,因此函数的最小正周期是π/2.(如果f(x+T)=f(x),那么T叫做f(x)的周期)。
2、公式法
这类题目是通过三角函数的恒等变形,转化为一个角的一种函数的形式,用公式去求,其中正余弦函数求最小正周期的公式为T=2π/|ω|,正余切函数T=π/|ω|。
函数f(x)=Asin(ωx+φ)和f(x)=Acos(ωx+φ)(A≠0,ω>0)的最小正周期都是;函数f(x)=Atan(ωx+φ)和f(x)=Acot(ωx+φ)(A≠0,ω>0)的最小正周期都是,运用这一结论,可以直接求得形如y=Af(ωx+φ)(A≠0,ω>0)一类三角函数的最小正周期(这里“f”表示正弦、余弦、正切或余切函数)。
3、最小公倍数法
由三角函数的代数和组成的三角函数式,可先找出各个加函数的最小正周期,然后找出所有周期的最小公倍数即得。
注:(1)分数的最小公倍数的求法是:(各分数分子的最小公倍数)÷(各分数分母的最大公约数)。
(2)对于正、余弦函数的差不能用最小公倍数法。
4、恒等变换法
概念:通过对所给函数式进行恒等变换,使其转化为简单的情形,再运用定义法、公式法或图象法等求出其最小正周期。
5、图像法
利用函数图像直接求出函数的周期。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
相关文章:
ERP原理与应用y 过程性评测(18)【参考答案】04-30
ERP原理与应用y 过程性评测(19)【参考答案】04-30
ERP原理与应用y 过程性评测(20)【参考答案】04-30
ERP原理与应用y 过程性评测(21)【参考答案】04-30
ERP原理与应用y 过程性评测(34)【参考答案】04-30
ERP原理与应用y 过程性评测(35)【参考答案】04-30
ERP原理与应用y 过程性评测(36)【参考答案】04-30
ERP原理与应用y 过程性评测(17)【参考答案】04-30