设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:|AX0+BY0+C|/√A2+B2。点向式:知道直线上一点(x0,y0)和方向向量(u,v)即可使用,(x-x0)/u=(y-y0)/v(u≠0,v≠0)。
点到直线的距离,即过这一点做目标直线的垂线,由这一点至垂足的距离。总公式为:设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:|AX0+BY0+C|/√A2+B2。考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有d=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l2+m2+n2)。
点向式:知道直线上一点(x0,y0)和方向向量(u,v)即可使用,(x-x0)/u=(y-y0)/v(u≠0,v≠0)。例题:2x-3y+4=0,2(x+2)=3y,∴(x+2)/3=y/2,为所求。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
相关文章:
初中三角函数定理04-30
初中数学定理大全04-30
三角形中位线定理和逆定理04-30
角平分线的判定定理04-30
三角形相似的判定条件04-30
相似三角形的性质定理04-30
证明三角形相似的方法04-30
菱形的判定04-30
单项式的系数和次数04-30
长方形和正方形的判定方法04-30