sin30°= 1/2;sin45°=√2/2;sin60°= √3/2。cos度数公式:cos30°=√3/2 ;cos45°=√2/2;cos60°= 1/2。tan度数公式:tan30°=√3/3 ;tan45°=1;tan60°=√3。
特殊三角函数值
角α | 0° | 30° | 45° | 60° | 90° | 120° | 135° | 150° | 180° | 270° | 360° |
弧度制 | 0 | π/6 | π/4 | π/3 | π/2 | 2π/3 | 3π/4 | 5π/6 | π | 3π/2 | 2π |
sinα | 0 | ? | √2/2 | √3/2 | 1 | √3/2 | √2/2 | ? | 0 | -1 | 0 |
cosα | 1 | √3/2 | √2/2 | ? | 0 | -0.5 | -√2/2 | -√3/2 | -1 | 0 | 1 |
tanα | 0 | √3/3 | 1 | √3 | - | -√3 | -1 | -√3/3 | 0 | - | 0 |
cotα | - | √3 | 1 | √3/3 | 0 | -√3/3 | -1 | -√3 | - | 0 | - |
三角函数定理
(一)正弦定理
在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R,直径为D。则有:a/sinA=b/sinB=c/sinC=2r=D(r为外接圆半径,D为直径)。
一个三角形中,各边和所对角的正弦之比相等,且该比值等于该三角形外接圆的直径(半径的2倍)长度。
(二)余弦定理
对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
对于边长为a、b、c而相应角为A、B、C的三角形则有:
①a2=b2+c2-2bc·cosA;
②b2=a2+c2-2ac·cosB;
③c2=a2+b2-2ab·cosC。
也可表示为:
①cosC=(a2+b2-c2)/2ab;
②cosB=(a2+c2-b2)/2ac;
③cosA=(c2+b2-a2)/2bc。
(三)正切定理
在三角形中,任意两条边的和除以第一条边减第二条边的差所得的商,等于这两条边对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。
对于边长为a,b和c而相应角为A,B和C的三角形,有:
①(a-b)/(a+b)=[tan(A-B)/2]/[tan(A+B)/2];
②(b-c)/(b+c)=[tan(B-C)/2]/[tan(B+C)/2];
③(c-a)/(c+a)=[tan(C-A)/2]/[tan(C+A)/2]。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
相关文章:
三角形相似的判定条件04-30
相似三角形的性质定理04-30
证明三角形相似的方法04-30
菱形的判定04-30
单项式的系数和次数04-30
长方形和正方形的判定方法04-30
余角和补角的概念04-30
孤独之旅写作背景是什么04-30
千树万树梨花开是指真正的梨花吗04-30
关于冬天的词语四字词语04-30