问题描述:
利用导数的定义求函数y=根号(x^2+1)的导数
最佳答案:
定义:
y'=lim dx->0 [y(x+dx)-y(x)]/dx
?=lim dx->0 [根号((x+dx)^2+1)-根号(x^2+1)]/dx
分子有理化,上下同乘[根号((x+dx)^2+1)+根号(x^2+1)]
注意分子是(a-b)(a+b)=a^2-b^2,根号抵消
?=lim dx->0 [((x+dx)^2+1)-(x^2+1)]/[dx(根号((x+dx)^2+1)+根号(x^2+1))]
?=lim dx->0 (2x*dx+dx^2)/[dx(根号((x+dx)^2+1)+根号(x^2+1))]
?=lim dx->0 (2x+dx)/[(根号((x+dx)^2+1)+根号(x^2+1))]
然后把dx=0代入,得到
y'=2x/[2根号(x^2+1)]=x/根号(x^2+1)
? ?