是使列向量的线性组合为0的系数。特征值为0说明矩阵的各列线性相关,此时的特征向量的各个分量即为使列向量的线性组合为0的系数。矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。
线性变换的特征向量是指在变换下方向不变,或者简单地乘以一个缩放因子的非零向量。
特征向量对应的特征值是它所乘的那个缩放因子。
特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。
线性变换的主特征向量是最大特征值对应的特征向量。
特征值的几何重次是相应特征空间的维数。
有限维向量空间上的一个线性变换的谱是其所有特征值的集合。
例如,三维空间中的旋转变换的特征向量是沿着旋转轴的一个向量,相应的特征值是1,相应的特征空间包含所有和该轴平行的向量。该特征空间是一个一维空间,因而特征值1的几何重次是1。特征值1是旋转变换的谱中唯一的实特征值。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
相关文章:
采菊东篱下什么意思04-30
王之涣和王昌龄都是唐代著名的什么诗人04-30
leader和领导的区别04-30
什么则迁什么则改04-30
齐景公曰唯梁丘据与我和夫翻译04-30
留取丹心照汗青的意思04-30
see的现在分词04-30
窈窕淑女君子好逑这首诗的全诗是什么04-30
现在完成时16个标志词04-30
虎伏深山听风啸 龙卧浅滩等海潮全诗04-30