正交矩阵一定是实对称矩阵吗

时间:2024-04-30 11:33:32 5A范文网 浏览: 平时作业 我要投稿

不一定。实对称矩阵有可能是正交矩阵,但是不是所有的实对称阵都是正交矩阵。 这里的P是是对称矩阵,且刚好P的逆等于P的转置,所以P也是正交矩阵。这只是一种特殊情况。正交矩阵定义:如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵 。

正交矩阵一定是实对称矩阵吗

正交矩阵的定理

在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵,如果正交矩阵的行列式为+1,则称之为特殊正交矩阵。

方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;

方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;

A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;

A的列向量组也是正交单位向量组。

正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。

为何正交矩阵一定可以对角化

书上定义合同也不过用的对称,致于一般矩阵有没有合同就不一定了,其实之所以对称矩阵可以正交单位是因为对称矩阵不同特征值的特征向量正交,所以也就只有同个特征值的不同特征向量才须要正交化,联系到特征向量的性质只有同一个特征值对应的特征向量线形表示才不会影响对角化。

如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵 。正交矩阵是实数特殊化的酉矩阵,因此总是属于正规矩阵。尽管我们在这里只考虑实数矩阵,但这个定义可用于其元素来自任何域的矩阵。

正交矩阵毕竟是从内积自然引出的,所以对于复数的矩阵这导致了归一要求。正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但也存在一种复正交矩阵,这种复正交矩阵不是酉矩阵。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。

相关文章:

高中历史必背知识点 50条重要考点归纳总结04-30

初中英语成绩怎么提高 学霸分享高分解题技巧04-30

中国经纬度位置在哪里 怎么看04-30

如图所示,如果把书从桌子的边缘慢慢拉开,但不离开桌面,书04-30

怎样提高英语成绩 初中英语学习技巧总结04-30

地球自转和公转的区别 二者的区别04-30

初中学霸总结的史上最强的单词记忆法04-30

如图所示,有一点光源S,它发出的光线斜射到水面上,照亮了04-30

初中英语怎么学能提高成绩 这些秘诀很重要04-30

世界十大河流流量排名 著名的河流有哪些04-30

热搜文章
最新文章