初中三角函数知识点总结

时间:2024-04-30 10:57:33 5A范文网 浏览: 平时作业 我要投稿

学好数学一定要掌握好三角函数公式,下面总结了数学三角函数重点知识点,希望能帮助大家学习数学。

初中三角函数知识点总结

三角函数概念

三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。

三角函数半角公式

sin(A/2)=±√((1-cosA)/2)

cos(A/2)=±√((1+cosA)/2)

tan(A/2)=±√((1-cosA)/((1+cosA))

三角函数倍角公式

Sin2A=2SinA*CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

锐角三角函数定义

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

正弦(sin):对边比斜边,即sinA=a/c

余弦(cos):邻边比斜边,即cosA=b/c

正切(tan):对边比邻边,即tanA=a/b

余切(cot):邻边比对边,即cotA=b/a

正割(sec):斜边比邻边,即secA=c/b

余割(csc):斜边比对边,即cscA=c/a

三角函数万能公式

sinα=2tan(α/2)/[1tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

三角函数积化和差公式

sinα·cosβ=(1/2)[sin(αβ)sin(α-β)]

cosα·sinβ=(1/2)[sin(αβ)-sin(α-β)]

cosα·cosβ=(1/2)[cos(αβ)cos(α-β)]

sinα·sinβ=-(1/2)[cos(αβ)-cos(α-β)]

sinαsinβ=2sin[(αβ)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(αβ)/2]sin[(α-β)/2]

cosαcosβ=2cos[(αβ)/2]cos[(α-β)/2]

积化和差的记忆口诀

积化和差得和差,余弦在后要相加;异名函数取正弦,正弦相乘取负号。

解释:

(1)积化和差最后的结果是和或者差;

(2)若两项相乘,后者为cos项,则积化和差的结果为两项相加;若不是,则结果为两项相减;

(3)若两项相乘,一项为sin,另一项为cos,则积化和差的结果中都是sin项;

(4)若两项相乘,两项均为sin,则积化和差的结果前面取负号。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。

相关文章:

《实用管理基础》形成性考核册04-30

《审计学原理》形成性考核册(全)(广东)04-30

《商法》形成性考核作业04-30

《商法》形成性考核册04-30

《高级财务管理》1形成性考核册案04-30

《商法》形成性考核参考04-30

《实用写作知识》》形成性考核册04-30

《实用法律基础》形成性考核册及04-30

《商务交际英语(1)》形成性考核册04-30

《商务交际英语(2)》形成性考核册04-30

热搜文章
最新文章