x的e次方的导数是什么

时间:2024-04-30 10:19:51 5A范文网 浏览: 平时作业 我要投稿

ex^e-1。相当于X^n的导数,(X^n)′=nX^(n-1),则(X^e)′=eX^(e-1)。当函数y=f(x)的自变量x在一点x₀上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x₀处的导数,记作f'(x₀)或df(x₀)/dx。

x的e次方的导数是什么

导数与函数的性质

单调性

(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。

(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。

根据微积分基本定理,对于可导的函数,有:

如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。进一步判断则需要知道导函数在附近的符号。对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。

x变化时函数(蓝色曲线)的切线变化。函数的导数值就是切线的斜率,绿色代表其值为正,红色代表其值为负,黑色代表值为零。

凹凸性

可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。

相关文章:

线性方程和非线性方程怎么区分04-30

《几何原理》的作者是谁?04-30

扁鹊的贡献04-30

周瑜是哪国人04-30

王冲是什么朝代的人?04-30

一次革命论和二次革命论区别04-30

八王之乱发生在什么时期04-30

李广是哪个朝代的人04-30

秋收起义是哪一年04-30

皇帝赵翌是哪代皇帝04-30

热搜文章
最新文章