基于Logit模型的集装箱港区合作博弈

时间:2024-04-26 12:12:25 5A范文网 浏览: 论文范文 我要投稿

 摘要:由于集装箱港口之间的直接竞争转换为集装箱港区联盟之间的合作博弈,因此采用两阶段博弈求解纳什均衡,通过数值分析发现:与非合作博弈相比,合作博弈中联盟方能够收取较高费用和提高联盟利润,但其市场份额均呈下降;而非联盟方的均衡收费、市场份额和均衡利润均为增加,当同一港口集装箱港区结成完全联盟时的增幅最大,即合作博弈中真正的赢家是局外人,其扮演了正交搭便车的角色。
  关键词:集装箱港区;合作博弈;Logit模型;均衡收费;市场份额
  
  随着港口管理体制的不断改革和引资政策的逐渐放宽,一些实力雄厚的世界级码头运营商纷纷投资我国各大集装箱港口,在提高码头作业效率和港口经营业绩的同时,也使得集装箱港口之间的直接竞争转换为集装箱港区联盟之间的合作博弈。
  
  一、 理论研究文献述评
  
  合作博弈理论聚焦于参与方在博弈前可以协商采取的博弈行为,假设这些协商可以通过签署具有约束力的协议进行: 论文检测天使-免费论文检测软件http://www.jiancetianshi.com
第一阶段博弈方非合作的决策是否签署联盟协议;第二阶段联盟方合作行事,而与非联盟方进行非合作纳什博弈;Anderson提出竞争性港口基于博弈论的最佳反应框架以及给定港口能否通过新增能力以抢夺或防御市场份额,并将该模型应用于目前釜山港和上海港的投资和竞争分析;Kaselimi将Hotelling模型应用港口之间的竞争,提出港口和潜在码头提供商投资意愿之间相互依存关系的策略框架;张研究港口之间的数量竞争和价格竞争,并探讨腹地可接近性和港口竞争的互动;Naima使用特征函数和核分析卡拉奇港口的三个局部联盟和一个大联盟及其稳定性。
  国内相关文献主要包括:江晓明将合作竞争理念引入区域内集装箱港口的竞争中,从理论的角度分析它们之间合作竞争的可能性并指出了区域内集装箱港口合作竞争的实现形式;周琴对比宁波和上海两大港口的优劣势,运用寡头垄断竞争方法对两大港口的竞争策略进行分析,提出提升宁波港竞争力的对策;章娴静探讨基于囚徒困境模型下的单阶段的策略,然后重点研究在重复博弈下两个港口的策略问题;周鑫在完全信息条件下构建港口竞争合作静态博弈模型,寻求该博弈模型的Nash均衡,并且分析不同参数变化对该模型结果的影响,研究表明港口服务替代率是影响港口竞争合作决策的主要因素;张树奎在完全信息条件下的竞争合作博弈模型基础上,分析上海港和宁波-舟山港竞争合作的发展趋势,研究表明合作—合作策略是上海港和宁波—舟山港的最优选择,也是一种共赢结果。
  
  
  论文检测天使-免费论文相似性查重http://www.jiancetianshi.com
二、 构建港区博弈模型
  
  托运人选择集装箱港区获得的效用函数如下:
  Ui=ai+b[Pi+Ei+Fi+f(Xi/CAPi)](1)
  其中ai表示选择集装箱港区i的基本效用,b表示集装箱港区的总费用系数,装卸费用表示为Pi;Ei表示集装箱港区装卸时间成本;Fi表示集装箱港区到内陆的固定运输费用;Xi和CAPi分别表示集装箱港区i的集装箱吞吐量和设计吞吐能力,则f(Xi/CAPi)表示集装箱港区的拥挤等待成本。
  因此,集装箱港区i的集装箱需求量为:
  其中X表示集装箱港区的集装箱总需求量,Qi表示集装箱港区i的市场份额,集计总需求系数A和?兹表示单个集装箱港区面临的需求依赖于所有集装箱港区的装卸费用和其它成本。
  所以,集装箱港区i的利润函数表示为:
  Ri=(Pi-Ci-?啄i)Xi+Oi(3)
  其中Ci和?啄i分别表示集装箱港区i装卸单位集装箱的平均成本和交纳港口当局的集装箱费用,Oi表示集装箱港区i获得的其它利润。
  首先,在签署具有约束力的协议之前,集装箱港区进行非合作博弈。根据式(3)可知集装箱港区HPA的利润函数为:RH=(PH-CH-?啄H)XH
  将利润函数对装卸费用求解一阶条件并令其为零,可得集装箱港区HPA的反应函数为:
  1+(PH-CH-?啄H)[?兹bQH+b(1-QH)]=0(4)
  同理,集装箱港区WPA和YPA的反应函数如下:
  1+(PW-CW-?啄W)[?兹bQW+b(1-QW)]=0(5)
  1+(PY-CY-?啄Y)[?兹bQY+b(1-QY)]=0(6)
  由于集装箱港区BPA的利润函数为:
  RB=(PB-CB-?啄B)XB+?啄YXY
  则集装箱港区BPA的反应函数为:
  1+(PB-CB-?啄B)[?兹bQB+b(1-QB)]+?啄YbQY(?兹-1)(7)
  联立式(4)-(7),则非合作博弈时纳什均衡的集装箱港区装卸费用为:
  其次,在签署具有约束力的协议之后,集装箱港区进行合作博弈。当上海港的三个集装箱港区都结成联盟后,则其在一个决策中心下运作,该联盟的利润函数为:
  R=(PH-CH-?啄H)XH+(PW-CW-?啄W)XW+(PY-CY-?啄Y)XY
  为实现联盟利润的最大化,将联盟利润函数分别对集装箱港区装卸费用求一阶条件并令其为零,则集装箱港区HPA的反应函数为:
  b(?兹QH+1-QH)(PH-CH-?啄H)+1+bQW(?兹-1)(PW-CW-?啄W)+bQY(?兹-1)(PY-CY-?啄Y)=0
  同理,可得集装箱港区WPA和YPA的反应函数,联立各反应函数求解联盟港区纳什均衡装卸费用:
  
  三、 合作博弈数值分析
  
   论文检测天使-免费论文检测软件http://www.jiancetianshi.com
第一,集装箱港区合作博弈的Logit模型涉及参数取值如下:
  (1)集装箱港区总需求系数。由于港口挂靠、港口转运和辅助业务方面的需求来自商品的需求,因而是经济增长、工业生产和国际贸易的函数。一个集装箱港区的装卸费用和其他属性的变动使得集装箱箱量在集装箱港区之间重新分配,但不会对总需求产生较大影响,因此集装箱港区总需求系数取值为A=1.50,?兹=0.01。
  (2)集装箱港区总费用系数。集装箱港区总费用系数是托运人的成本系数,即决策者面临的价格系数选择。Polydoropoulou发现船舶里程费用参数为负值且非常重要,航运成本每增加1欧元将导致效用减少0.051 6;Saeed在船公司选择集装箱码头的Logit模型中,集装箱装卸费的系数估计值为-0.062 4,因此集装箱港区总费用系数取值为b=-0.05。
  (3)集装箱港区交纳单位费用。2002年2月10日上海市人民政府和浙江省人民政府签订了《联合建设洋山深水港区合作协议》:洋山港一期工程总投资130.60亿元,其中港口工程61.24亿元,占港口工程投资的40%。上海同盛投资集团有限公司占90%,以货币资金投入;浙江省嵊泗县国有资产经营公司占10%,因此集装箱港区交纳单位集装箱费用为?啄1=?啄2=?啄4=0,?啄3=10。
  (4)集装箱港区装卸平均成本。根据上海国际港务(集团)股份有限公司2010年上半年度报告:集装箱板块营业成本1 528 185 464.65元,集装箱吞吐量达到13 555 816标准箱,则平均成本为112.73元/标准箱;根据宁波港股份有限公司首次公开发行股票招股意向书:2010年上半年集装箱装卸及相关业务的主营业务成本211 000 000元,集装箱吞吐量达到6 380 000标准箱,则平均成本为33.07元/标准箱。
  (5)集装箱港区内陆运输固定费用。以江苏省为例,其各地到洋山港区的运距虽然比到外高桥港区远80公里~90公里,但南京、镇江等地到洋山港区却比到北仑港区近了30公里左右,南京、镇江以外的地区到洋山港区比到北仑港区的运距近100公里~200公里;另外,结合锦程物流网提供的上海港集装箱运输费用标准进行估算内陆运输固定费用为F1=400,F2=400,F3=455,F4=500。
  [8]电大学习网.免费论文网[EB/OL]. /d/file/p/2024/0425/fontbr /> 

        (6)集装箱港区选择基本效用。集装箱港区基本效用取决于集装箱泊位参数,如码头岸线长度、集装箱泊位个数、码头前沿水深、陆域面积和堆场面积;设施设备,如集装箱岸边吊、堆场轮胎吊、集装箱叉车和集装箱牵引车;注册资本;年设计吞吐能力和集装箱年吞吐量,因此根据集装箱港区的主要参数,基本效用取值为a1=0,a2=0.3,a3=0.5,a4=0.2。
  (7)集装箱港区装卸效率成本。由于集装箱港区装卸效率成本主要体现在集装箱流动资金占用损失和集装箱占用费、堆存费等方面。上海口岸集装箱进出口平均货值为28万元/TEU;单位集装箱占用费为1美元/天,折合6.52元/天;资金利率按中国人民银行人民币短期贷款年利率5.31%,因此集装箱港区装卸效率成本取值为E1=59.91,E2=41.07,E3=15.46,E4=47.32。

  (8)集装箱港区拥挤等待成本。由于集装箱港区实际吞吐量通常超过设计吞吐能力而产生拥挤成本,根据表2可得各集装箱港区设计吞吐能力(单位:万TEU)CAP1=210,CAP2=645,CAP3=930,CAP4=260。
  第二,集装箱港区合作博弈数值分析如下:
  根据构建的集装箱港区Logit博弈模型,通过数学软件MATLAB R2006b和Mathematica7.0计算出集装箱港区非合作博弈的纳什均衡结果见表1。
  其中WPA拥有45.22%的最大市场份额,但其均衡收费却高与其他三个集装箱港区,这意味着托运人选择集装箱港区不仅考虑收费成本,还考虑装卸效率、拥挤水平等时间成本以及港区位置、设施设备等。
  当上海港的三个集装箱港区结成一个完全联盟组合后,纳什均衡结果见表2。
  与非合作博弈相比,同一港口的集装箱港区完全联盟方能够收取较高的装卸费用,但其市场份额均呈下降,联盟港区的总利润增加了11.67亿元;非联盟港区BPA的均衡收费也有所提高,且市场份额和均衡利润均大幅增加了近一倍。
  同一港口的集装箱港区也可结成部分联盟形式,如HPA和WPA的合作博弈均衡结果见表3。
  与非合作博弈相比,首先集装箱港区部分联盟方都能够收取较高的装卸费用,其中集装箱港区HPA和WPA在两者联盟下的装卸费用最高;集装箱港区非联盟方BPA的装卸费用也有所提高,并在集装箱港区HPA和WPA联盟下的装卸费用最高;集装箱港区部分联盟方的均衡装卸费用都低于集装箱港区完全联盟方的均衡装卸费用。其次集装箱港区部分联盟方的市场份额均呈下降趋势,其中HPA市场份额下降最大的是在其与WPA的联盟下;集装箱港区非联盟方BPA的市场份额均为提升,增幅最大的是当HPA和WPA联盟时,且BPA在集装箱港区部分联盟下的市场份额都低于集装箱港区完全联盟下的市场份额。再次集装箱港区部分联盟方的利润都有所增加,增幅最多的是集装箱港区HPA和WPA的联盟;集装箱港区非联盟方BPA的均衡利润均为增加,增幅最大的是在集装箱港区HPA和WPA联盟下,且BPA在集装箱港区部分联盟下的均衡利润都低于集装箱港区完全联盟下的均衡利润。
  
  四、 结束语
  
  结合上海港和宁波港集装箱港区参数,构建隶属不同港口的集装箱港区之间合作博弈Logit模型。通过逆向归纳法分析纳什均衡结果,集装箱港区的均衡费用不仅取决于自身和其它集装箱港区的吞吐量市场份额、装卸集装箱平均成本、交纳单位集装箱费用、装卸效率成本和拥挤等待成本,还取决于集装箱港区的总费用系数和集计总需求系数。进一步的研究包括:考虑股权结构对集装箱港区合作博弈的影响;将集装箱港区的用户范围从托运人拓展到船公司、内陆运输经营商、仓库经营商、海关机构和内陆码头等其它供应链角色;全球生产网络和国际经济贸易调整与集装箱港区协调与发展。
  参考文献:
  1.Song, D.W. Panayides, P.M. A conceptual application of cooperative game theory to liner shipping strategic alliances. Maritime Policy and Management,2002,29(3):285-301.
  2.Olieman, N.J. Hendrix, E.M.T. Stability likelihood of coalitions in a two-stage cartel game: An estimation method. European Journal of Operational Research,2006,(174):333-348.
  3.Anderson, C.M. Park, Y.A. Chang, Y.T., Yang, C.H. Lee, T.W., Luo, M. A game theoretic analysis of competition among container port hubs: The case of Busan and Shanghai. Maritime Policy and Management,2008,35(1):5-26.
  4.Kaselimi, E.N. Reeven, P.V. The impact of new port terminal operating schemes on inter-port competition. Dalian: International Association of Maritime Economist,2008.
  5.Zhang, A. The Impact of Hinterland Access Conditions on Rivalry between Ports.Vancouver:ITF,2008:1-30.
  6.Naima Saeed, Odd I. Larsen. An applic- ation of cooperative game among container term- inals of one port. European Journal of Oper- ational Research,2010,203(2):393-403.
  7.江晓明.区域内集装箱港口合作竞争的博弈分析. 港口科技,2007,(6):14-16.
  8.周琴.宁波港与上海港的寡头竞争分析.宁波大学学报,2007,20(1):17-21.
  9.章娴静.港口竞争合作博弈分析以上海港和宁波港为例.物流工程与管理,2009,31(9):13-15.
  10.周鑫,季建华.基于完全信息条件下的港口竞争合作静态博弈分析.武汉理工大学学报(交通科学与工程版),2009,33(5):819-927.
  11.张树奎,鲁子爱.上海和宁波—舟山港竞争合作的博弈分析.水运工程,2010,(5):79-82.
  12.Meersman, H. Van de Voorde, E. Vanelsl- ander, T. Port pricing issues: a state of the art. European Journal of Transport and Infrastructure Research,2003,(3):371-386.
  13.Polydoropoulou, A. Litinas, N. Demand models for Greek passenger shipping.Maritime Transport: The Greek Paradigm,2007,21(1):297-322.
  14.Saeed, N. Competition and Cooperation among Container Terminals in Pakistan: with Emphasis on Game Theoretical Analysis. Oslo:Molde University College,2009.


  [8]电大学习网.免费论文网[EB/OL]. /d/file/p/2024/0425/fontbr /> 

相关文章:

浅谈传统企业管理模式与现代企业管理模式的比较与探讨04-26

基于异常考核的班组绩效管理模式探索04-26

试论企业设备管理工作方法探讨04-26

试论医院如何降低管理费用04-26

浅谈信息技术在物流管理中的应用04-26

基于供应链管理的医院药品管理流程的优化重组04-26

高职物流管理专业核心课程建设的研究04-26

基于ISO10015标准的培训管理体系构建实践04-26

浅谈铁路发展现代物流管理04-26

基层安全培训的几条落实思路04-26

热搜文章
最新文章