分析和解决问题的能力是指能阅读、理解对问题进行陈述的材料;能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述.它是逻辑思维能力、运算能力、空间想象能力等基本数学能力的综合体现.在日常教学中,我们应有意识的培养学生分析和解决数学问题的能力。
1.重视通性通法教学,引导学生概括、领悟常见的数学思想与方法
数学思想较之数学基础知识,有更高的层次和地位.它蕴涵在数学知识发生、发展和应用的过程中,它是一种数学意识,属于思维的范畴,用以对数学问题的认识、处理和解决.数学方法是数学思想的具体体现,具有模式化与可操作性的特征,可以作为解题的具体手段.只有对数学思想与方法概括了,才能在分析和解决问题时得心应手;只有领悟了数学思想与方法,书本的、别人的知识技巧才会变成自已的能力.
每一种数学思想与方法都有它们适用的特定环境和依据的基本理论,如分类讨论思想可以分成:(1)由于概念本身需要分类的,象等比数列的求和公式中对公比 的分类和直线方程中对斜率 的分类等;(2)同解变形中需要分类的,如含参问题中对参数的讨论、解不等式组中解集的讨论等.又如数学方法的选择,二次函数问题常用配方法,含参问题常用待定系数法等.因此,在数学课堂教学中应重视通性通法,淡化特殊技巧,使学生认识一种“思想”或“方法”的个性,即认识一种数学思想或方法对于解决什么样的问题有效.从而培养和提高学生合理、正确地应用数学思想与方法分析和解决问题的能力.
2.加强应用题的教学,提高学生的模式识别能力
高考是注重能力的考试,特别是学生运用数学知识和方法分析问题和解决问题的能力,更是考查的重点,而高考中的应用题就着重考查这方面的能力,这从新课程版的《考试说明》与原来的《考试说明》中对能力的要求的区别可见一斑.(新课程版将“分析和解决问题的能力”改为“解决实际问题的能力”)
数学是充满模式的,就解应用题而言,对其数学模式的识别是解决它的前提.由于高考考查的都不是原始的实际问题,命题者对生产、生活中的原始问题的设计加工使每个应用题都有其数学模型.如1997年的“运输成本问题”为函数与均值不等式;1998年的“污水池问题”为函数、立几与均值不等式;1999年的“减薄率问题”是数列、不等式与方程;2000年的“西红柿问题”是分段式的一次函数与二次函数等等.在高中数学教学中,不但要重视应用题的教学,同时要对应用题进行专题训练,引导学生总结、归纳各种应用题的数学模型,这样学生才能有的放矢,合理运用数学思想和方法分析和解决实际问题.
3.适当进行开放题和新型题的训练,拓宽学生的知识面
要分析和解决问题,必先理解题意,才能进一步运用数学思想和方法解决问题.近年来,随着新技术革命的飞速发展,要求数学教育培养出更高数学素质、具有更强的创造能力的人才,这一点体现在高考上就是一些新背景题、开放题的出现,更加注重了能力的考查.由于开放题的特征是题目的条件不充分,或没有确定的结论,而新背景题的背景新,这样给学生在题意的理解和解题方法的选择上制造了不少的麻烦,导致失分率较高.因此,在高中数学教学中适当进行开放题和新型题的训练,拓宽学生的知识面是提高学生分析和解决问题能力的必要的补充.
4.重视解题的回顾
在数学解题过程中,解决问题以后,再回过头来对自己的解题活动加以回顾与探讨、分析与研究,是非常必要的一个重要环节.这是数学解题过程的最后阶段,也是对提高学生分析和解决问题能力最有意义的阶段.
[8]电大学习网.免费论文网[EB/OL]. /d/file/p/2024/0425/fontbr />
解题教学的目的并不单纯为了求得问题的结果,真正的目的是为了提高学生分析和解决问题的能力,培养学生的创造精神,而这一教学目的恰恰主要通过回顾解题的教学来实现.所以,在数学教学中要十分重视解题的回顾,与学生一起对解题的结果和解法进行细致的分析,对解题的主要思想、关键因素和同一类型问题的解法进行概括,可以帮助学生从解题中总结出数学的基本思想和方法加以掌握,并将它们用到新的问题中去,成为以后分析和解决问题的有力武器.
[8]电大学习网.免费论文网[EB/OL]. /d/file/p/2024/0425/fontbr />
相关文章:
浅析初中数学的兴趣培养04-26
浅谈初中数学教学过程中的反思04-26
高中学习方法和能力培养04-26
如何在高中数学课堂教学培养学生探索意识04-26
初一教学的体会04-26
浅谈网络对中学生数学学习的能力影响04-26
构建高中数学教学的高效课堂有效方法04-26
浅谈中学生数学阅读能力的培养04-26
加强起始教育,提高高中学生数学成绩04-26
初中数学教学反思策略初探04-26