摘 要 该文在人工免疫系统和克隆选择原理的基础上,给出了CLONALG算法,并对该算法的实现原理、参数选择等进行了详细研究;给出了利用该算法进行数字识别的实例。
关键词 克隆选择;人工免疫系统;数字识别
1 引言
生物免疫系统是一个高度进化的生物系统,它旨在区分外部有害抗原和自身组织,从而清除抗原并保持有机体的稳定。从计算的角度来看,生物免疫系统是一个高度并行、分布、自适应和自组织的系统,具有很强的学习、识别、记忆和特征提取的能力。人们希望从生物免疫系统的运行机制中获取灵感,开发出面向应用的免疫系统模型——人工免疫系统(Artificial Immune System, AIS),用于解决实际问题。目前,AIS已发展成为计算智能研究的一个崭新的分支。其应用领域逐渐扩展到了信息安全、模式识别、智能优化、机器学习、数据挖掘、自动控制、故障诊断等诸多领域,显示出AIS强大的信息处理和问题求解能力以及广阔的研究前景。 克隆选择是一种常用的AIS算法。本文主要探讨该算法在数字识别中的应用。 克隆选择原理最先由Jerne提出,后由Burnet给予完整阐述。其大致内容为:当淋巴细胞实现对抗原的识别(即抗体和抗原的亲和度超过一定阀值)后,B细胞被激活并增殖复制产生B细胞克隆,随后克隆细胞经历变异过程,产生对抗原具有特异性的抗体。克隆选择理论描述了获得性免疫的基本特性,并且声明只有成功识别抗原的免疫细胞才得以增殖。经历变异后的免疫细胞分化为效应细胞(抗体)和记忆细胞两种。 克隆选择的主要特征是免疫细胞在抗原刺激下产生克隆增殖,随后通过遗传变异分化为多样性效应细胞(抗体细胞)和记忆细胞。克隆选择对应着一个亲合度成熟(affinity maturation)的过程,即对抗原亲合度较低的个体在克隆选择机制的作用下,经历增殖复制和变异操作后,其亲合度逐步提高而“成熟”的过程。因此亲合度成熟本质上是一个达尔文式的选择和变异的过程,克隆选择原理是通过采用交叉、变异等遗传算子和相应的群体控制机制实现的。 根据克隆选择原理,DeCastro提出了克隆选择算法(CLONALG算法)模型,并在模式识别、组合优化和多峰值函数优化中得到了验证。其算法的核心在于增殖复制算子和变异算子,前者与个体亲合度成正比,保证群体亲合度逐步增大,后者与个体的亲合度成反比例关系,保留最佳个体并改进较差个体。2 CLONALG算法
CLONALG算法是根据克隆选择原理设计的免疫算法。解决问题时,一般把问题定义为抗原,而问题的解就是抗体集合。在特定的形态空间中,随机产生的抗体试图与抗原发生匹配,即尝试解决问题。匹配度高的抗体有可能产生更好的解,被赋予更大的克隆概率参与下一次匹配。 抗体和抗原之间的距离D采用汉明距离,如式(1)所示。 抗体和抗原之间的亲和力Aff与它们的距离成反比,即Aff=1/D。 免疫算法的实现步骤如下: 步骤1 初始化抗体集合,随机产生N个抗体。 步骤2 计算抗体集合Ab中所有抗体与抗原Ag的亲和力。 步骤3 选择n个亲和力最高的抗体,组成一个新的抗体集合。并将这n个抗体按照亲和力升序排列。 步骤4 将选中的n个抗体按照对应的亲和力进行克隆,产生新的集合C,亲和力越高的抗体,克隆的数量就越多,总的数量计算公式如式(2)。 Nc是总的克隆数,式(2)右边是一个和式,其中第i项代表抗体Abi产生的克隆数, 是预设的参数因子,N是抗体集合包含的元素个数。 步骤5 新的集合C按照基因重组概率进行基因重组,产生成熟的克隆集合C*。 步骤6 计算成熟克隆集合的亲和力。 步骤7 从成熟克隆集合中选择n个亲和力最高的抗体作为记忆抗体的候选,亲和力超过现有记忆抗体的候选抗体称为新的记忆抗体。 步骤8 替换掉亲和力最低的d个抗体,并用新的随机抗体补充。 步骤9 如果抗体集合没有达到匹配精度要求且进化代数小于最大进化代数,则转到步骤2,否则算法结束。
[8]电大学习网.免费论文网[EB/OL]. /d/file/p/2024/0424/fontbr />
3 应用CLONALG算法识别数字
模式识别技术是根据研究对象的特征和属性,利用一定的分析算法,确定研究对象的归属和类别,并使结果尽可能符合真实。一般模式识别系统都包括问题描述、系统训练和模式识别几个部分。本系统要解决的问题是识别0到9这十个数字。每个字符都用一个长度L=120的二进制串表示(每一个像素用一个二进制数表示)。原始字符(待识别的字符)(抗原)如图1所示。
抗原(待识别字符) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
完全匹配代数 | 36 | 42 | 54 | 47 | 47 | 53 | 49 | 42 | 40 | 53 |
第一排按照从左向右的次序:第1幅图是原始字符,第2幅图是随机产生的抗体集,第3幅图和第4幅图分别是进化到第10代和第20代的抗体集。第二排按照从左向右的次序:第1幅图,第2幅图分别是进化到第30代,第40代的抗体集。最后一幅图是进化到第47代的抗体集。进化过程中抗体与抗原的距离变化情况如表2所示。
进化代数 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 47 |
抗体与抗原的距离D | 30 | 19 | 12 | 8 | 5 | 3 | 1 | 1 | 1 | 0 |
4 总结
从上面的讨论可以看出,CLONALG算法是一种高效、快速收敛的算法,非常适合应用于模式识别。参考文献
[1] 阎平凡等着,人工神经网络与模拟进化计算,清华大学出版社,2000[2] 陈慰峰着,医学免疫学,人民出版社,2001[3] 李涛着,计算机免疫学,电子工业出版社,2004
[8]电大学习网.免费论文网[EB/OL]. /d/file/p/2024/0424/fontbr />
相关文章:
IBM高性能计算机系统一次重大故障分析04-26
计算机辅助绘图的工作过程实训04-26
基于BBNs的软件故障预测方法04-26
对品牌期刊网站建设的思考04-26
基于计算机视觉和神经网络技术的烟叶品质智能识别方法04-26
企业工资管理系统(下)04-26
网络环境下的图书发行模式研究04-26
数字化时代的韩国出版产业特色04-26
多媒体技术在地理信息系统中的应用研究04-26
JAVA 类文件保护分析与研究04-26