1三角函数的和差化积公式
sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]
sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]
cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]
cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
2三角函数积化和差公式
sinAsinB=-[cos(A+B)-cos(A-B)]/2
cosAcosB=[cos(A+B)+cos(A-B)]/2
sinAcosB=[sin(A+B)+sin(A-B)]/2
cosAsinB=[sin(A+B)-sin(A-B)]/2
3三角函数积化和差推导过程
sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-cosasinb
两式相加得:sinacosb=1/2[sin(a+b)+sin(a-b)]...(1)
两式相减得:cosasinb=1/2[sin(a+b)-sin(a-b)]...(2) cos(a+b)=cosacosb-sinasinb
cos(a-b)=cosacosb+sinasinb 两式相加得: cosacosb=1/2[cos(a+b)+cos(a-b)]...(3)
两式相减得:sinasinb=-1/2[cos(a+b)-cos(a-b)]...(4)
用(a+b)/2、(a-b)/2分别代替上面四式中的a,b 就可得到和差化积的四个式子。 如:(1)式可变为:
sina+sinb=2sin[(a+b)/2]*cos[(a-b)/2] 其它依次类推即可。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
相关文章:
高三物理期末总结范文04-27
高三物理教学总结怎么写04-27
高三物理教学工作计划04-27
高三物理必背知识点整理04-27