高二变化的大背景,便是文理分科(或七选三)。在对各个学科都有了初步了解后,学生们需要对自己未来的发展科目有所选择、有所侧重。这可谓是学生们第一次完全自己把握、风险未知的主动选择。5A范文网【5a.net】为你整理了《高二年级数学必修一知识点归纳》,助你金榜题名!
1.高二年级数学必修一知识点归纳
数列定义:
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列的通项公式为:an=a1+(n-1)d(1)
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
以上n均属于正整数。
解释说明:
从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。
在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。
且任意两项am,an的关系为:an=am+(n-m)d
它可以看作等差数列广义的通项公式。
公式:
从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
基本公式:
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
2.高二年级数学必修一知识点归纳
空间中的平行关系
1、直线与平面平行(核心)
定义:直线和平面没有公共点
判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)
性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行
2、平面与平面平行
定义:两个平面没有公共点
判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行
性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线
3.高二年级数学必修一知识点归纳
圆及圆的相关量的定义
1.平面上到定点的距离等于定长的`所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。
3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有公共点为相切,这条直线叫做圆的切线,这个的公共点叫做切点。
6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。
4.高二年级数学必修一知识点归纳
1.函数的奇偶性。
(1)若f(x)是偶函数,那么f(x)=f(-x)。
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0)。
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。
2.复合函数的有关问题。
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定。
3.函数图像(或方程曲线的对称性)。
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然。
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0。
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称。
4.函数的周期性。
(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数。
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数。
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数。
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数。
5.判断对应是否为映射时,抓住两点。
(1)A中元素必须都有象且。
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象。
6.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
5.高二年级数学必修一知识点归纳
空间两条直线只有三种位置关系:平行、相交、异面
1、按是否共面可分为两类:
(1)共面:平行、相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法
两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法
2、若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;
(2)没有公共点——平行或异面
直线和平面的位置关系:
直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行
①直线在平面内——有无数个公共点
②直线和平面相交——有且只有一个公共点
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
相关文章:
2022年中考生物知识点之:生物的多样性必备知识点(3)04-27
2022年中考生物知识点之:生物的多样性必备知识点(6)04-27
2022年中考生物知识点之:生物的多样性必备知识点(5)04-27
2022年中考生物知识点之:生物的多样性必备知识点(4)04-27
2022年中考历史知识点之:中国古代史知识点(3)04-27
2022年中考历史知识点之:中国古代史知识点(2)04-27
2022年中考历史知识点之:中国古代史知识点(1)04-27
2022年中考历史知识点之:中国古代史知识点(5)04-27