第三章
1.光合作用的重要意义:
自然界的碳素同化作用有细菌的光合作用、绿色植物的光合作用和细菌的化能合成作用三种类型,其中绿色植物光合作用需要的条件(光、CO2、水等)最为丰富,因此其规模最大,对整个自然界具有重要的意义:
(1)绿色植物的自养性就是依靠光合作用将无机物合成有机物,为地球上所有生物(包括人类)提供了食物。
(2)光合作用在合成有机物的同时,将吸收的太阳能转变为化学能贮存在合成的有机物中,有机物中贮存的化学能不仅是植物自身以及其它所有异养生物生命活动的能源,也我们人生产活动的重要能量来源;
(3)植物的光合作用要吸收CO2放出O2,因此对维持大气中CO2和O2浓度的相对稳定和环境保护起着重要的作用;光合作用也是现代农林业生产的基础,在理论和实践上都具有重大意义。
2.叶绿体色素的光学性质与生物合成:
叶片是光合作用的主要器官。叶绿体是进行光合作用的特殊细胞器。
高等植物的叶绿体色素包括叶绿素(a和b)和类胡萝卜素(胡萝卜素和叶黄素),分布在光合膜上,两类(四种)色素各有其特定的吸收光谱。
叶绿素的吸收光谱表现为:
在蓝紫光区(430~450nm)和红光区(640~660nm)各有一个强的吸收峰,类胡萝卜素则只在蓝紫光区(400~500nm)有一强的吸收峰。
四种光合色素中只有少数特殊状态的叶绿素a具有光化学活性,能将光能转变为电能,称为作用中心色素,其余的色素只能吸收、传递光能,称为聚光色素。
3.光合作用的机理:
光合作用包括原初反应、电子传递和光合磷酸化、CO2同化三个相互联系的过程。
原初反应包括:光能的吸收、传递和光化学反应,通过原初反应把光能转变为电能(高能态电子)。电子在光合电子传递链中传递的同时伴随有光合磷酸化,把电能转变为活跃的化学能贮存在合成的ATP和NADPH+H+中,这两种高能物质用于推动CO2的同化过程,故二者合称为“同化力”。在整个电子传递过程中,电子的传递要靠PSII和PSI两个光系统的驱动,电子最终来源于水,最终的电子受体是NADP+。
4.植物光合作用碳同化的途径及其特点:活跃的化学能转变为稳定化学能是通过CO2同化过程完成的。CO2同化有三条途径:C3途径(Calvin循环)、C4途径和CAM途径。根据C02同化途径的不同,把植物分为C3植物、C4植物和CAM植物。但C3途径是有植物所共有的CO2同化的主要形式。其固定CO2的酶是Rubisco,既可在叶绿体内合成淀粉,也可通过叶绿体被膜上的Pi运转器”,以丙糖磷酸(TP)形式运出叶绿体,在细胞质中合成蔗糖。C4途径和CAM途径固定CO2的酶都是PEPCase,其对CO2的亲和力大于Rubisco,但其固定的CO2最后都要在植物体内再次把CO2释放出来,参与C3途径合成淀粉等。C4途径的CO2初次固定是在叶肉细胞的细胞质中进行的,固定形成的四碳二羧酸运输到维管束鞘细胞中脱羧放出CO2,最终在鞘细胞的叶绿体中通过C3途径将CO2同化为碳水化合物。因此C4途径起着浓缩CO2的"CO2泵”作用,使鞘细胞中的CO2浓度增大,光呼吸减弱,光合效率增高。CAM途径的特点是夜间气孔开放,在叶肉细胞质中吸收固定CO2形成有机酸,白天光下将有机酸脱羧放出CO2,在叶绿体中经C3途径合成有机物。CAM途径是植物在长期进化过程中形成的适应适应于干旱环境的一种碳同化方式。
例:
为什么C4植物的光合效率一般比C3植物的高?
分析
主要从以下几个方面论述:二者叶片解剖结构及生理特点的差异;二者同化CO2的方式的不同对光合效率的影响;碳同化酶系的催化能力及其在空间分布的差异对光呼吸的影响与光合效率的关系。
解
C4植物是通过C4途径固定同化CO2的,该途径是由C4-二羧酸循环(C4循环)和卡尔文循环(也称C3途径)两个循环构成。C4循环主要是在叶肉细胞内进行的,而卡尔文循环则位于维管束鞘细胞内。在叶肉细胞中,PEP羧化酶固定CO2形成的OAA经C4-二羧酸循环转移到维管束鞘细胞中,在此处脱羧放出CO2,再由卡尔文循环将CO2固定并还原成碳水化合物。这样的同化CO2途径表现出了两个优越性:
(1)叶肉细胞中催化CO2初次固定的PEP羧化酶活性强且对CO2的亲合力高(其Km=7?g),因此固定CO2的速率快,特别是在CO2浓度较低的情况下(大气中的CO2含量正是处于这样一种状况),其固定CO2的速率比C3植物快得多。
(2)C4途径中,通过C4-二羧酸循环将叶肉细胞吸收固定的CO2转移到鞘细胞,为鞘细胞中卡尔文循环提供CO2,因此其作用好象一个CO2“泵”一样,将外界的CO2泵入鞘细胞,使鞘细胞的CO2浓度增大,抑制了Rubisco的加氧活性,使光呼吸显著减弱,光合效率大大提高,同时也使C4植物的CO2补偿点明显降低(0~10ppm)。
C3植物只在叶肉细胞中通过卡尔文循环同化CO2,由于RubisCO对CO2的亲合力低(其Km=450?g),加之自然界CO2浓度低(0.03%),氧气含量相对高(21%),因此C3植物Rubisco的加氧反应明显,光呼吸强,CO2补偿点高(50~150ppm),光合效率低。此外C4植物维管束鞘细胞中形成的光合产物能及时运走,有利于光合作用的进行。
【评注】 C4植物的高光合效率在温度相对高、光照强的条件下才能明显表现出来;在光弱、温度低的条件下C4植物的光合效率反不如C3植物。
例:
列出10种矿质元素,说明它们在光合作用中的生理作用。
分析 与光作用关系密切的矿质元素主要有两类,一类是与叶绿素生物合成有关的元素,它们通过影响叶绿素的含量来影响光合作用;另一类是直接参与光合作用的元素。
解 许多矿质元素与光合作用关系十分密切,它们都直接或间接地影响着光合作用,这些元素主要有N、P、K、Mg、Fe、Cu、Mn、CI、B、Zn等。
N:N是参与光合作用的蛋白质(叶绿体的各种结构和功能蛋白)和酶的重要成分,同时也是叶绿素的组成元素,因此N对光合作用的影响最为明显。当氮素充足时光合作用旺盛,其原因有两个方面:一是通过增大叶面积,延长叶片光合功能,间接影响光合作用;另一方面是直接影响,即影响光合能力。因为氮素充足时叶绿素含量增高,加速同化力形成,同时氮素也能增加叶片蛋白质含量,亦即使参与碳同化的酶的含量增加,使进暗反应的顺利进行。
P:是核苷酸和一些辅酶等的主要成分,因此磷一方面直接参与光合磷酸化反应,同时磷参与光合碳同化、促进光合产物的运输与转化,从而间接影响光合作用。
K:K在植物体内以离子形式存在,不参与物质的组成。K+ 对光合作用的影响主要一是通过调节气孔运动影响CO2的供应;二是K+
能稳定叶绿体基粒的结构,同时也是醛缩酶、淀粉合成酶、丙酮酸磷酸双激酶等的激活剂,促进淀粉积累和光合产物转运,间接影响光合作用。
Mg:Mg是叶绿素的组成元素,同时也是RuBP羧化酶、5-磷酸核酮糖激酶等酶的活化剂,因而Mg对光合同化力形成和碳同化都有直接的影响,在光合作用有重要作用。缺Mg最明显的病症就是叶子失绿,严重缺Mg时可引起叶片早衰与脱落。
Fe:Fe是光合链中细胞色素、铁硫蛋白、铁氧还蛋白的组成成分,因此与光合电子传递直接有关;铁也是叶绿素合成的必需元素,可能是作为叶绿素生物合成某种酶的激活剂而起作用。近年来发现铁对叶绿体构造的稳定也有明显的影响,某些植物缺铁时,在叶绿素分解的同时,叶绿体也解体。
Cu:铜是光合链中质体蓝素的成分,参与光合电子传递;铜也是叶绿素生物合成中某些酶的激活剂,参与叶绿素的生物合成。植物缺铜时叶片生长缓慢,幼叶失绿。
Mn:锰是光合放氧复合体的重要成分,参与光合放氧反应和电子传递;锰也是叶绿素形成和维持叶绿体正常结构的必需元素,因而对光合作用有直接影响。
B:硼能与蔗糖形成络合物,能提高UDPG焦磷酸化酶的活性,因而能够促进光合产物(碳水化合物)运输和转化,通过消除光合产物的反馈抑制(叶片中光合产物积累)来间接影响光合作用。
CI:氯在光合作用中参与水的光解,在水光解过程中起活化剂作用,促进氧的释放和NADP+ 的还原。
Zn:锌是碳酸酐酶的成分,该酶催化CO2和H2O转化为H2CO3的可逆反应,,促进CO2溶于水向叶绿体运输,因而影响CO2的供应。此外锌也是叶绿素物质合成中某些酶的激活剂,影响叶绿素的生物合成。
例:
何谓光合磷酸化?目前公认的解释光合磷酸化机理的理论是什么?
解
叶绿体在光下将无机磷和ADP转化为ATP,形成高能磷酸键的过程称为光合磷酸化。形成高能磷酸键的能源是光能,经原初反应将光能转换为电能(高能态电子),电子在光合电子传递链中传递时能量顺次降低,释放出的能量可推动ADP的磷酸化反应形成ATP,将电能转换这化学能贮藏于ATP的高能磷酸键中。光合磷酸化有环式和非环式两种,用化学反应式可表示为:
ADP + Pi —?ATP(环式光合磷酸化)
2ADP+2Pi+2NADP++H2O—?2ATP+O2+2NADPH+H+(非环式光合磷酸化)
有关光合磷酸的机理曾有几种观点,但人们普遍认可的是Mitchell 1961年提出的化学渗透学说(chemiosmotic
hypothesis)。提出该学说的前提是:假设类襄体膜对质子(离子)是不能透过的(只有在特殊或特定位置可透过);膜内外两侧具有一定氧化还原电位的电子传递体不均称地嵌合在膜内;膜上有偶联质子转移的阴、阳离子扩散系统;膜上还有一个转移质子的ATP酶系统(偶联因子,CF0-CF1)。现已证明这几种假设是成立的,与事实相符。
依据上述条件,该学说认为光合磷酸化合成ATP的动力是质子推动力。在光合电子传递过程中,有三个步骤可使H+穿过类襄体膜向内腔转移导致膜两侧H+
浓度变化。一是水光解时可使电荷分离,在膜内侧释放H+;二是FQ穿梭时将H+由外侧转入内侧;三是环式光合磷酸化时也有H+内运。因此伴随电子传递过程的进行,类襄体内腔不断积累H+,膜外侧OH-浓度增大,导致膜内、外两侧产生pH值差(?
pH)和膜电位差(?ψ),二者合起来称为质子电动势。膜两侧的H+浓度达到一定数值时,质子就会通过特定的质子通道——偶联因子复合物(CF0-CF1)回流,回流时释放的能量可推动ATP的合成。根据研究,H+/ATP=3,即3个质子由内向外流时有一个ATP合成。
CF0-CF1(coupling
factor,偶联因子)是叶绿体光合磷酸化反应中的关键机构,它由嵌于膜内CF0(亲脂性,称偶联因子基部)和暴露于膜表面的CF1(亲水性,称偶联因子)两部分组成。CF0是质子通道,CF1具有ATP酶活性,可借助质子回流时释放的能量合成ATP。
例:
光合作用可分为哪三大过程?各过程中能量是如何转化的?
分析
从能量转化的角度来看,光合作用的三个阶段是:原初反应——将光能转换为电能;电子传递和光合磷酸化——将电能转换为活跃的化学能;碳同化——将活跃的化学元素能转换为稳定的化学能。
解 光合作用是一个蓄积能量和形成有机物的过程,但从能量转化的角度来看,可将光合作用的全过程分为三大过程:即原初反应、电子传递与光合磷酸化和碳同化。
(1)原初反应
将光能转化为电能:原初反应发生于最初起始阶段的反应,它是光合作用中直接与光能利用相联系的反应,包括光能的吸收、传递和光化学反应(光能的转换)。原初反应的基本历程是,聚光色素吸收光能后通过诱导共振的方式将能量传递给作用中心色素分子,作用中心色素分子接受聚光色素传递来的光能被激发后,提供一个高能电子去还原作用中心中的原初电子受体,而自身则因失去电子呈氧化态,并可氧化原初电子供体而夺取电子,由此引起电荷分离,将吸收的光能转换成作用中心原初电子供体和原初电子受体两端的电势能,即将光能转换为电能。
(2)电子传递与光合磷酸化
将电能转化为活跃的化学能:经原初反应将光能转换为电能即高能态电子,电子在光合链中传递时能量顺次降低,释放出的能量可推动ADP的磷酸化反应形成ATP,将电能转换为化学能贮藏于ATP的高能磷酸键中。同时电子最终传递给辅酶II(NADP+)将其还原成还原型辅酶II(NADPH+H+)。NADPH+H+也带有较高的能量,且具有强的还原力,因此ATP和NADPH+H合称为“同化力”,用于推动CO2的同化过程。
(3)碳同化过程
将活跃的化学能转化为稳定的化学能:在有“同化力”存在的条件下就可推动光合碳循环(Calvin循环)的运转,即利用ATP和NADPH+H+将RuBP和CO2羧化反应产生的有机酸(PGA)还原为碳水化合物。这样通过碳同化过程就将ATP和NADPH+H+中的活跃化学能,转换为稳定的化学能贮藏在合成的碳水化合物中。
第四章 植物的呼吸作用
一、内容提要
1、呼吸作用及其生理意义:
高等植物的呼吸作用包括有氧呼吸和无氧呼吸两种类型,有氧呼吸是指生活细胞在氧气的参与下,把某些有机物彻底氧化分解成CO2和H2O,同时释放能量的过程:
C6H12O6 + 6O2 = 6CO2 + 6H2O + 能量(2870KJ? mol-1)
无氧呼吸则是在无氧条件下,生活细胞将某些有机物分解成不彻底的氧化产物,同时释放能量的过程,其产物可以是乙醇或乳酸:
C6H12O6 = 2C2H5OH + CO2 +能量(100KJ? mol-1)
与有氧呼吸相比,无氧呼吸的基本特征是:
没有氧气参与,底物氧化不彻底,中间产物少,产能低。因此无氧呼吸不能满足高等植物各种生理过程对能量和物质的需求,其存在仅仅是植物对缺氧环境的暂时适应,有氧呼吸才是高等植物进行呼吸的主要形式。
呼吸作用是一切生活细胞所共有的生命活动,是新陈代谢的重要组成部分,与植物的全部生理过程有着极其重要的关系。呼吸作用不仅为植物生命活动提供所需要的大部分能量,而且呼吸过程中产生一系列中间产物是进一步合成植物体内其重要生命物质如蛋白质、核酸、脂类等的原料,同时呼吸作用在植物抗病免疫方面也有重要意义。
2、呼吸作用的多样性及其意义:高等植物的呼吸作用具有多样性,主要表现为底物降解的多样性、呼吸电子传递的多途径和末端氧化的多样性。高等植物呼吸作用的底物主要是糖类,糖的分解代谢途径有多种途径,既可走糖酵解——三羧酸循环((EMP-TCAC),也可走磷酸戊糖途径(PPP)以及乙醛酸循环等途径。呼吸作用电子传递除呼吸链主途径外,还有多条电子传递途径和多种末端氧化酶系统。它们相互依赖,功能各异,特点不同,这种多样性,有利于高等植物适应复杂多变的环境条件,以使植物个体能够生存,种族得以延缓。呼吸代谢途径无论是糖酵解、三羧酸循环还是戊糖磷酸途径,细胞都能自动调节和控制,使代谢维持平衡。
3、呼吸作用的能量转换及其意义:呼吸作用中,在底物逐步氧化分解的同时,贮存在呼吸底物(有机物)中的稳定化学能也逐步释放出来,因此呼吸作用是一个放能的过程。它逐步释放出的能量,一部分以热的形式散失于环境,其余能量通过氧化磷酸化作用合成高能磷酸键转换为活跃的化学能贮存于合成的ATP中,供植物生命活动所需用。ATP是细胞内能量转变和贮存的主要形式。
4、影响呼吸作用的因素及其与农林业生产的关系:植物呼吸速率受多种内外因素的影响。一般来说,凡是生长迅速的植物种类、器官、组织、细胞,其呼吸均较旺盛,组织水分状况及环境中的温度、氧浓度、二氧化碳浓度或机械损伤等都会明显的影响呼吸速率。呼吸作用影响植物体的整个生命活动,因而对农林生产中作物及林木的种植、育种以及种子、果蔬、块根块茎的贮藏保鲜都有密切的关系。在栽培管理中应采取有效措施,保证呼吸过程正常进行,以获得高产、优质产品,在粮食和果蔬的贮藏中应采取适宜的措施降低呼吸速率,以减少损耗,以利于安全贮存。
(一)基本内容
呼吸作用的概念及生理意义,呼吸作用中底物降解及能量转化的基本过程,环境因素对呼吸作用的影响。
(二)重点
EMP、TCAC、PPP途径在细胞中的定位及其生理意义,抗氰呼吸及其意义,呼吸链电子传递及氧化磷酸化,影响呼吸作用的因素及其与作物采后贮藏的关系。
(三)基本概念
呼吸作用;氧化磷酸化;EMA;TCAC;PPP;呼吸链;抗氰呼吸;末端氧化酶;能荷调节;巴斯德效应;呼吸速率;呼吸商;安全含水量。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
相关文章:
电大《国际私法》网考题库之客观题(8)04-27
四大名著高考知识点总结04-27
高中英语知识点必修一04-27
高中必修五语文必背知识点04-27
高中英语连词知识点04-27
高中地理必修一地球运动知识点04-27
高中必修四政治知识点归纳04-27
高中英语必修一的知识点04-27
高中化学化学键知识点04-27